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Abstract We show ulat the mixmaster universe. or Bianchi K, model passes the Painlev6 
test in the form of ule Ablowitz-Fanani-Segur algorithm, i.e. the solutions of the equations 
of motion do not have movable critical points. Thus this system is probably integrable and 
therefore nonchaotic. 

1. Introduction 

The mixmaster universe model was introduced by Belinski and Khalatnikov [I]  (and 
independently by Misner [2]) and has been studied extensively over the years. This model 
is homogeneous but anisotropic: it expands along two directions and contracts along the 
third one. As one approaches the initial singularity, backwards in time, the directions of 
expansion and contraction change, presumably in a chaotic way, an infinite number of times. 
This system was believed to be ergodic and mixing [3,4], i.e. maximally chaotic. 

In order to check the chaotic character of the mixmaster universe, several people 
calculated the maximal Liapunov characteristic number (EN). The first calculations [5,6] 
found that the maximal LCN is positive, thus indicating chaos, but more accurate calculations 
[7-101 have shown that the maximal LCN is zero. Thus it seems that the mixmaster universe 
is not chaotic. Recently a number of attempts have been made to redefine the ENS or find 
other indicators of chaos, in order to save the chaotic behaviour of the mixmaster universe. 
However, these have not produced any definite results. 

In order to avoid these ambiguities we investigate here the possible integrability of the 
mixmaster universe model by a completely different method, namely singularity analysis, a 
well-known integrability detector. Using singularity analysis we check whether this model 
has the Painlevt property, i.e. whether its solutions have no critical singularities. In order to 
perform the analysis we write the model in Hamiltonian form, apply the Ablowitz-Ramani- 
Segur (ARS) [ 1 I ]  algorithm and show that the mixmaster universe passes the Painlevt test 
This fact is a strong indication 112, 131 that this model is probably integrable. 

2. The equations of motion 

The solution of Einstein's equations in the case of the mixmaster universe, or Bianchi E, 
model, are written [14]: 
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and we have 

4(ff/j + bp + piy) = e4" + e4P + e4Y - 2e21u+Bl - 2e2'B+Yr - 2e2'Y+Q' (2) 

where dots mean derivatives with respect to the logarithmic time r which is related to the 
coordinate time t by the relation 

r = -1nt. (3) 

If we introduce the variables 

x = k  y = 2 p  z = 2 y  

p1 = -(Y + i) p y  = -(i + i )  pz = -(i + y) (4) 

we find 

2.i = P X  - Py - P. 2Y = Py - Pz - P x  22 = P. - P I  - Py (5 )  

(6) px = W(eY +ei -ex) 

with 

H 

py = 2eY(e2 +ex - eY) pr = 2ez(ex + ey - e') 

$(p;+ p: + p: - 2p,py - 2pyp, - 2p,px) +ez' +eZY +eZ' -2eX+Y - 2 e Y + '  -2e'+X = 0. 

(7) 

The variables x, y, z, p x ,  p y ,  pz are canonical variables in the Hamiltionian H and the 
energy has the particular value zero. 

3. The Painlev6 analysis 

In order to perform the singularity analysis we transform the system (9, (6) to one involving 
rational expressions only. We introduce the new (non-canonical) variables 

X =ex Y = c Y  Z = e '  (8 )  

and rewrite the equations of motion: 

2x = X ( P ,  - p y  - p.) 2Y = Y ( p y  - pz - p x )  

py = 2Y(Z + x - Y) 

2 z  = Z ( p ,  - P I  - p y )  (9 )  

(10) pr = 2X(Y + z - X) pz = 2Z(X + Y - Z ) .  

We apply now the ARS [ I  I ]  algorithm, to equations (9) and (IO). We recall that this 
algorithm has three steps: 
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(i) Obtain the leading singular behaviours. This means that one must determine all the 
possible degrees of virtual poles of solutions as well as the leading coefficients. 

(ii) Look for the resonances. This is done by expanding the solutions in a Laurent series 
and by obtaining recurrence relations for the coefficients: the resonances correspond to the 
cases in which one of the coefficients is not uniquely determined 

(iii) Check the compatibility at the resonances. In the resonant case one obtains an 
inhomogeneous linear system. The compatibility condition ensures the solvability of this 
system despite the nullity of the determinant. 

If t = so is a pole of the solution of these equations we first find the leading terms by 
setting 

x =XIS" Y = x2sm2 z = x3s" 

' P r  = PlS"l p y  = pzs"2 pr = p3sn3 

(where s = t - to) in (9) and (IO): 

Without loss of generality we can assume mi < mz < m3, nl < n2 < n3. We distinguish 
two main cases: 

Case I: nl < n2 < n3.  As we shall see, this is generic singular behaviour with six free 
parameters. The lowest possible exponents in equations (13) and (14) give 

n l = - l  n z = O  n3=O (15) 

and 

ml = - I  m 2 = 1  m 3 = l .  (16) 

The coefficients of the lowest-order terms in (13) and (14) give 

p I  = -2 XI = f i  (17) 

while xzl xs, m. p3 remain free. We now look for the resonances by setting 

x = x1sm1 + yls"+' 

px  = PIS"' +a#+' p y  = p2Sn' + 62S"'+' p2 = p3P3 + 8,S"3+' (18) 

in equations (9) and (10). The coefficients of the terms linear in (yi,Bi) give 

n ( r  - I )  = -yl + + I &  n(r + I)  = y3 - $381 (19) 

81(r  - I )  = -4x1yl &r = 0 B3r = 0 (20) 

y = X2S" + *p+' z = x 3 p 3  + *p+' 

ydr + I )  = y2 - Lx281 2 
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and the resonances are obtained by setting the determinant of the coefficients of (yi. S i )  to 
zero. We find 

(r + i)r4(r - 2) = 0. (21) 

The resonance - 1 is related, as usual, to the freedom of the location TO of the singularity, 
while the quadruple 0 resonance is related to the free X Z ,  x3, pz. p3 parameters. It thus 
remains to investigate whether the r = 2 resonance satisfies the compatibility condition 
by expanding all variables up to terms h e a r  in s and substituting in the full system (9), 
(IO). Thus we check whether or not logarithmic terms enter the singular expansion. It turns 
out that the resonance r = 2 does not lead to incompatibilities and we find the following 
singular expansion: 

x = f- + o +  yls +. .. 

pr = -- + (pz + p3)  f Zi(xz + x3 - 2 ~ 1 ) s  +.. . 

(22) 
i Y =xzs+. .. z = x 3 s  +. . . 
S 

p,  = pz *2iXzs+ .. 2 
S 

pz = p3 A2iX3S 

where the free parameter yl enters at r = 2. Thus this expansion is generic, i.e. it has 
six free parameters, and it is of Painlevd type. (Special cases of the dominant singular 
expansion can be obtained by putting one or both of the pz, p3 to zero.) 

Next we must examine non-generic expansions. One can easily convince oneself that 
no singular solution with only N o  divergent ( x i ,  p i )  can exist. We thus turn now to the 
second case: 

Case II: nl = nz = n3. The same analysis as in the generic case leads to 

111 =n2 = n 3  = -1 ml= m2 = ml = - 1  

XI = xz = x3 = f i  

(r + I ) ~ ( ~  - 2)’ = 0. 

P I  = pz = p3 = 2. (23) 

The resonances are straightforward to compute and we find 

(24) 

The appearance of the triple (-1) resonance may look puzzling at first sight. However, 
there is nothing wrong with it: one of the (-I) is assaciated with the freedom of TO, while 
the remaining two (-1)s indicate that the positions of the singularities of all three variables 
X, Y and Z were initially free and by choosing the behaviour I/s we forced all of them 
to diverge at the same point TO. No logarithmic terms enter at this resonance. On the other 
hand, the triple 2 is something that may lead to incompatibilities. Expanding all x i  and pi 
we have checked that compatibility at r = 2 is indeed satisfied and thus this non-generic 
expansion 

x = f- + y,s + . . . (25) 
I i i Y =f-+yzs+ . . .  Z = &- + ns+. . . 
S S S 

is also of Painlev6 type depending on four free parameters. In conclusion, the mixmaster 
universe model satisfies the Painlev6 criterion of integrability. 
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4. Conclusion 

The mixmaster universe was proposed as a chaotic model of the early universe. Its chaotic 
character was assessed through qualitative analyses and numerical calculations. However, 
a detailed computation of the maximal LCN did not lead to positive values (which is an 
indicator of chaos), using either the 7-time of Belinski et a1 [I] or the 52-time (which is 
equal to 52 = i ( x  + y + 2 ) )  of Amowia et a1 [ 151. Thus certain authors [16-18] inacduced 
new time variables in order to derive a positive LCN. However, such a method is ambiguous. 
In fact, even an integrable system, which is known to be nonchaotic, can give a positive 
LCN by an appropriate time transformation. For example, a linear deviation of two nearby 
orbits ,y = ,yo11 that gives zero LCN becomes an exponential deviation in another time tz 
related to fl by the relation ti = eqt2 with q 0 in time t2 the LCN is positive. In this 
paper we tested the possible integrability of the mixmaster model using singularity analysis 
and we found that the equations of motion pass the Painlevd test Thus the system is 
probably integrable [12,13]. In order to have an independent check, we also performed an' 
analysis based on Ziglin's theorem 1191 using the methods of [20]. We found that the system 
satisfies, in a non-trivial way, the condition required by this theorem for integrability. So 
Ziglin's approach does not prove non-integrability of the system at hand. Still, the 6nal 
proof of integrability would be the computation of two constants of motion (besides the 
Hamiltonian). However, our preliminary calculations did not lead to any positive result for 
integrals polynomial in the momenta of low degree. Clearly the system deserves further 
investigation. 
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